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EXTENDED SUMMARY

1

The methods described in this report model the incidence rather

than the prevalence of symptoms, with incidence defined as a

positive report of symptom occurrence by an individual who did not

report that symptom on the previous day. This strategy evolved from

preliminary analyses which established that the respiratory symptoms

under study had low prevalence rates and which also suggested that

the incidence and recurrence of symptoms might have different

mechanisms requiring different explanatory models.

Diary studies, defined broadly as studies which record the

health status of each study participant repeatedly over time,

provide a powerful method for assessing the impact of short-term

changes in the environment on human health. If health status is

reported as the presence or absence of each of several symptoms, the

data consist of sets of sequences of binary outcomes, one for each

symptom and participant. The basic analytic objective, to estimate

the exposure-response model linking exposure and symptom status, is

complicated by the dependencies among responses on successive days

(autocorrelation) and among responses of the same subject on

different days (heterogeneity). This paper develops methods for

analyzing diary data that address these complications and

illustrates their use by analyzing data collected in a diary study

conducted as part of the Six Cities Study of Air Pollution and

Health.



Finally, a comprehensive model would include both individual

effects and autocorrelation. Models with these characteristics and

the associated estimation procedures are described in Section 3.

Section 5 describes two strategies for the analysis of diary

studies, one appropriate for data sets where each subject has

relatively few events, and one appropriate to the setting where the

data for each subject can be modeled separately.

Similarly, it is reasonable to expect variability among

subjects in the frequency of symptoms and, possibly, in sensitivity

to air pollution exposures. Methods for modeling individual

heterogeneity are also described in Section 3. Two-stage methods,

which begin by modeling the data for each study participant and then

analyze the parameters from these analyses, are not indicated when

incidence rates are low as in the present application. Because they

can be very useful in studies with higher background rates, however,

they are also discussed in Section 3.

Further investigation of the residuals from ordinary logistic

regression established, however, that the incidence rates had

detectable autocorrelation. Section 3 describes methods for

modeling autocorrelation in the incidence data. The methods are

applied to the Six Cities data in Section 4.

When the endpoint is symptom incidence, only subjects free of

the symptom on the previous day are at risk. This fact suggested a

relatively simple analysis, in which response rates on successive

days were treated as independent observations. Analyses using this

approach are called ordinary logistic regression in this report.
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A diary study conducted as part of the Six Cities Study of Air

Pollution and Health is described in Section 2. Section 3 describes

several different families of models and associated statistical

methods for the analysis of diary data. In Section 4, we apply

these methods to a subset of the diary study collected in the Six

We consider the situation in which participants report the

presence or absence of a respiratory symptom on each day. Thus, the

data consist of many sequences of binary responses, each associated

with a common sequence of environmental data. Because participant

characteristics may determine sensitivity to environmental exposure,

the methods described consider these characteristics in the

analysis.

The estimation of the economic benefits of reductions in air

pollutant concentrations requires quantitative information about the

health effects of exposure to air pollutants. One possible pattern

of health effects is increases in respiratory illnesses and symptoms

during or shortly after periods of increased air pollution. Diary

studies, in which participants report their respiratory health

status repeatedly over time, are a natural method for studying the

respiratory health effects of short-term fluctuations in air

quality. Although diary studies are easy to design, they are

difficult to analyze. This project was devoted to the development

and empirical assessment of new statistical methods for analyzing

diary data.

1. INTRODUCTION
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role. First, a literature review and discussion with specialists in

Two decisions made early in the analysis played an important

The Six Cities Study of Air Pollution and Health is a large

longitudinal study of the effects of exposure to air pollutants on

the respiratory health of both children and adults (Ferris et al

1979, Ware et al 1984). The initial cohorts of children and adults

were enrolled in six U.S. cities (Watertown, MA, Kingston-Harriman,

TN, St. Louis, MO, Portage, WI, Steubenville, OH, and Topeka, KA)

between 1974 and 1979. A second cohort of approximately 6,000 third

to fifth grade school children was enrolled between 1982 and 1986.

A subset of approximately 1,800 children from the second cohort was

enrolled in a year-long diary study in which parents completed a

daily report on the child's respiratory (and other) symptoms. For

logistical reasons, the diary study extended over four school years

(1984-1988). While the diary study was underway in one of the

cities, air pollution concentrations were measured on a daily or

more frequent basis. The ten symptoms monitored by the parents are

listed in Appendix 1 along with a sample of the diary form and

instructions to the parents. Parental smoking and gas stove

information, as well as the child's respiratory illness history,

were obtained via questionnaire.

Cities Study. In Section 5, we discuss the strengths and weaknesses

of the different methods, as well as guidelines for choosing a

method to use in other settings.

2. DESCRIPTION OF THE DATA SET
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The incidence rates for all of the symptoms and symptom

complexes were low, ranging from 0.2% (URI) to 1% (cough with or

without symptoms). This implied that the data on recurrence of

symptoms on days subsequent to a first report were very sparse.

Thus, this report focuses on the analysis of incidence rates, where

the incidence rate on a given day is the rate of reporting of a

symptom among children who were free of that symptom on the previous

day. Other more restrictive definitions of incidence were

considered, but had little effect on the analysis because of the

consistently low rate of symptom reporting.

respiratory disease led to the decision to use two or more

respiratory symptoms to define three respiratory symptom complexes.

These complexes, labeled upper respiratory infection (URI), lower

respiratory inflammation (LRI), and rhinitis, are defined in

Appendix 1. We also studied the frequency of cough without other

symptoms. The ten symptoms (including any report of coughing) and

the four constructed variables made a total of fourteen endpoints to

be studied. Second, we distinguished between the incidence of a

symptom, where incidence was defined as a report of the symptom by a

child who had not reported that symptom on the previous day, and the

recurrence of a symptom, where recurrence was defined as a report by

a child who had reported that symptom on the previous day. This

strategy was adopted because both medical considerations and

preliminary data analysis suggested that the incidence and

recurrence of symptoms might have different mechanisms requiring

different explanatory models.
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or equivalently,

subjects in the study at the jth occasion and is the number of

incident cases of the symptom at the jth occasion among the

subjects who were symptom-free at the previous occasion. is

assumed to have a binomial distribution with parameters and

where is the marginal probability of symptom incidence for a

subject.

This discussion focuses on the logistic model and its

extensions. The logistic model is often used to model binary or

binomial outcomes because the parameters can be interpreted as the

logarithms of odds ratios and because computing is relatively

simple. The logistic model is defined by

This section describes methods for analyzing sequences of

incidence rates when the objective is to model the effects of

temperature, air pollution, and other time-varying variables on

the incidence rate. Mismodeling the mean or the covariance

structure of the sequences can lead to misleading results about

environmental risk. Because data sets may be large and models

complex, we seek computational simplicity, generally based on

likelihood maximization or least squares methods.

The data consist of sequences where

is a vector of p covariates affecting all

3. MODELS FOR THE ANALYSIS OF DIARY DATA

6
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Both the number of subjects at risk at any occasion, and the

total number of occasions, T, can be large in diary studies.

The goal of the analysis is to estimate the effects of the

pollution variables on incidence rates while controlling for other

factors, particularly autocorrelation and subject heterogeneity.

Autocorrelation (or serial correlation) is a particular form of the

tendency for incidence rates close together in time to be positively

correlated. This could be due to state dependence across individ-

uals (e.g., symptoms may occur because other subjects had the

symptom on the same or previous days), and/or time-dependent omitted

covariates (which tend to be highly correlated in time).

Heterogeneity, or variability among individuals in the

probability of response, induces positive correlation among responses

on the same individual. It can be due to observable or unobservable

within-subject covariates (such as smoking level or illness history)

which vary across individuals, or different thresholds, suscep-

tibilities, or reporting behavior across individuals. The latter

could occur, for example, if participants varied in the severity of

symptoms considered reportable.

Many methods have been proposed for modeling heterogeneity in

binary data. One widely-used approach, the individual intercept

model, assumes that the response probability follows a parametric

model which depends on a linear function of covariates, and that one

of those covariates is an intercept that varies from subject to

subject. These intercepts may be treated either as fixed or random

effects. This is equivalent to assuming that the response
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probability at some standard value of the covariates varies among

subjects. This approach is adopted in this report, which focuses on

logistic regression models with variable intercepts.

Failure to account for either autocorrelation or heterogeneity

in the analysis can lead to errors in inference similar to those

resulting from the naive use of standard methods in problems

involving misspecified covariates, missing data, or measurement

errors. In particular, mismodeling can result in failure to detect

important effects as a consequence of biased point and interval

estimates and incorrect hypothesis testing. Diary data typically

have positively correlated outcomes, yielding less information than

the same number of independent responses, so at a minimum the usual

standard error estimates may need to be inflated.

3.1. Modeling Autocorrelation

It is natural to begin the analysis of incidence rates with

models that assume independence of symptom rates on different days.

Preliminary analysis of data from the Six Cities Study established,

however, that residuals from regression models including important

covariates were autocorrelated, and that this autocorrelation could

not be explained by other measured time-varying covariates. Thus,

refinements of the model were needed to account for this

autocorrelation. This section describes several methods for

modeling autocorrelation.
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3.1.1. Using Lagged Prevalence or Incidence to Adjust for State

Dependence

One possibility is that the probability of symptom occurrence

on a given day depends on the participants symptom status on

previous days. When modeling the prevalence of symptoms, Muenz and

Rubinstein (1985), Cox (1970), and Korn and Whittemore (1979) used

symptom status on the previous day as a covariate. This approach is

not relevant to the analysis of incidence data, however, because all

subjects at risk were, by definition, symptom free on the previous

day. As an extension of this idea, however, one could assume that

the probability of symptom occurrence for a study participant

depends on the symptom status of others in the population on

previous days. This dependence could arise if, for example, the

symptoms were due to infectious diseases and risk of infection

increased with the prevalence of the disease. Such epidemic or

clustering effects could be modeled by assuming that

where the added covariate (with index p + 1) is the lagged

prevalence or incidence rate in the study population. To use the

lagged incidence rate as a covariate, we set

Alternatively, one could use the lagged prevalence rate in the study

population as a measure of the likelihood of exposure to an

infectious disease on a previous day.

The technique of including lagged prevalence or incidence rates

in the model should be used cautiously, especially when assessing

the weak effect of an autocorrelated environmental variable. The
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pollutant variable under study may also be autocorrelated, and the

resulting collinearity will cause bias toward 0 in the coefficient

of the pollutant variable if lagged prevalence is added to the

model. Adding lagged prevalence or incidence to the model is only

justified if there is a biological rationale for doing so, as with

certain infectious diseases.

3.1.2. Using Residuals to Modify the Response Probabilities

Observed autocorrelation in incidence rates need not be due to

state dependence. Suppose, for example, that there is a time-

dependent omitted covariate. In general, such time-dependent

variables have an autocorrelation structure of their own which

induces autocorrelation in the residuals of the incidence model. As

the residuals not only include a random component but are also a

function of the omitted variable, the residuals (or a function of

the residuals) can serve as a surrogate for the omitted covariate

(Box and Jenkins 1970).

If the are relatively large, using the central limit theorem

we have that approximately

If the errors, are autocorrelated, modifying the

marginal probabilities based on an autoregressive model may be

appropriate. As before, let

and let
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define the conditional probability of incidence given the incidence

rate on the previous occasion. Because of the heteroscedasticity of

symptom rates, the model should be altered slightly to give

where Preliminary work suggests that this

modification avoids the need for restrictions on the admissible

range of values of p, but this issue is still under investigation.

These models can be generalized to include second or higher order

autoregressive terms.

Another possibility is to assume an additive contribution on

the logit scale. In particular, we could model

This model clearly imposes no restrictions on the allowable range of

P= Further obvious modifications could be made to accommodate

heteroscedasticity of the residuals and/or higher order

autoregressive terms.

Still a third possibility is to extend the methods of empirical

logits in a way that corresponds to the treatment of autocorrelated

errors in the linear model. If we define the empirical logit as

we have that

approximately, where (see Cox

1970). Considering the residuals on the logit scale it

is reasonable to consider the model
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with obvious extensions to accommodate higher order autoregressive

terms. Again there are no restrictions on the allowable range of p.

The use of empirical logits is recommended only when both the are

relatively large and the response rates are not too extreme. The

empirical logits approach was not considered in the analysis of the

Six Cities data because symptom rates were consistently low and

zeroes were common.

In practice, it can be difficult to determine which

autoregressive scheme is "best". The choice may sometimes be

influenced by the availability of statistical software. The choice

may influence parameter interpretation. The B parameters have more

of a marginal interpretation when the residual effects are added on

the probability scale and more of a conditional interpretation if

the effects are added on the logit scale. Each of these schemes has

the desired effect of reducing autocorrelation of the residuals.

3.1.3. Covariance Models to Accommodate Autocorrelation Effects

Most, if not all, of the methods described thus far for

modeling autocorrelation lead to changes in the interpretation of

regression coefficients for the variables under study, because these

coefficients become partial regression coefficients adjusted not

only for other covariates but for the residuals included in the

model. Liang and Zeger (1986) and Zeger and Liang (1986) have

described methods for fitting logistic models to the symptom rates

while taking account of the correlation among symptom rates on
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different days. The general approach is to use a "working"

correlation matrix to construct weighted point estimators and

covariance estimators that are consistent and asymptotically

normally distributed even when the covariance matrix is

misspecified. Their methods are more efficient than estimators

assuming independence of all the observations. The case of first or

higher order autocorrelation represents a special case of their

method which promises to be very useful in the analysis of diary

data. Speaking more generally, these robust estimators and

covariance matrix estimates deserve more serious attention in many

epidemiological applications.

3.2 Models for Heterogeneity

The previous section described methods for modeling

autocorrelation of incidence rates. This section focuses on the

effects of individual heterogeneity, assuming that the residuals are

not autocorrelated in time. In Section 3.3, we discuss models which

combine the autocorrelation and subject heterogeneity effects.

The simplest method for analyzing incidence is to combine the

responses from all subjects at each occasion. Observations from

different individuals are usually assumed to be independent, so if

there are subjects at risk, then the number of affected subjects

at the jth response time, is assumed to follow a binomial

distribution with parameters and
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where denotes the (common) covariate level at the jth response

time. This greatly simplifies the computing, which depends in the

collapsed data only on the order of T, the number of response times,

not on the number of subjects. This method may be appropriate when

a sample of homogeneous subjects is chosen randomly from a

population of interest.

One may wish to focus on particular subgroups, perhaps defined

by one or more categorical subject characteristics. In this case, a

stratified analysis may be appropriate, with a separate parameter

vector for each stratum. Data for subjects in the same stratum can

still be collapsed, so the calculations remain manageable.

If the subject characteristics are continuously distributed or

include several categorical covariates, more general methods are

needed. We introduce additional notation to discuss these methods.

We now focus on individuals, and consider sequences of the form

is a

known vector of p covariates and is a binary random variable.

We set = 1 when the symptom of interest is incident in the ith

subject at the jth occasion, and set = 0 if the subject is at

risk and the symptom is not observed. The covariate vectors,

can involve both subject characteristics and time-varying

covariates. Typically, the time-varying covariates, such as

environmental factors, affect all subjects, so many of the

components of will not vary over subjects. The marginal

distribution of is assumed to depend on and we write
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for the marginal probability of symptom incidence on the jth

occasion for the ith subject. The methods we describe allow for

unequal numbers or timing of observations for each subject, but for

simplicity we assume that all subjects are seen at exactly the same

occasions.

3.2.1. Random Effects Models (Varying Slopes and Intercepts)

If T is large, we may observe heterogeneity among subjects in

response rates that is not explained by the within-subject

covariates. Subjects may also vary in their sensitivity to

pollutant exposures, as measured by the regression coefficients.

Korn and Whittemore (1979) proposed a two-stage analysis based on

the assumption that each subject's sequence of binary responses

follows a logistic model but with coefficients that vary among

subjects. Specifically, they assume a parameter vector, Bi, for

individual i, so that the conditional probability of response for

the ith subject at the jth response time is given by

They then assume that the pi arise from a multivariate normal

distribution. Their estimation technique also proceeds in two

stages. First, estimate ii for the ith subject using ordinary

logistic regression. If the number of observations on the ith

subject is sufficiently large, the asymptotic distribution of ii is

approximated by
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where ii is the usual information-based variance-covariance matrix.

Then, in the second stage, we assume

and so

and 6 and C are then estimated from the averages and sums of squares

of the iii and i using the method of moments.i

Here fj and E: are the population parameters and are viewed as

the primary parameters of interest. The above method indirectly

accounts for within-subject covariates through the variation in the

coefficients. Weighted least squares regression could also be used

to regress the individual regression coefficients, ici, on

characteristics of the children or their families, such as parental

smoking or the child's illness history.

This two-stage estimation method is relatively easy to

implement, but has two drawbacks. First, the asymptotic normality

assumption of holds only when there is a

sufficiently large number of observations per subject and the

response rate for each is sufficiently high. In other cases the

model is suspect. In particular, they are not appropriate when

response rates are very low, as is the case in the Six Cities Diary

study. In fact, for consistency and asymptotic normality of the

estimates we need that both T + = and N + QD. Second, this
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estimation method is not the most efficient. More efficient (but

more computationally intensive) multivariate random effects models

are available (Stiratelli, Laird, and Ware 1984).

3.2.2. Random Intercepts Models (Common Slopes and Varying

Intercepts)

An alternative approach is to assume that the regression

coefficients are constant across subjects but that each subject has

a different underlying response rate (as measured by the intercept).

This formulation allows individual heterogeneity due to observed or

unobserved subject covariates, differences in reporting, or other

reasons, but information regarding 6, the primary parameter vector

of interest, is strengthened by combining information across

subjects.

In particular, we postulate that responses from the ith subject

follow the logistic model with success probability

where pi denotes the intercept for the ith subject. There are

basically three estimation approaches.

First, if one is not interested in the individual intercepts, a

conditional maximum likelihood approach can be used. Here the

likelihood contribution of the ith subject is given by the extended

hypergeometric distribution
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where J is the set of subsets of {1,....,T} with size equal to

This likelihood also arises in the analysis of matched or

stratified binary observations or 2 x 2 tables. The major virtue of

maximizing the conditional likelihood

is that this estimator is consistent and asymptotically normal in

both the large strata and sparse strata cases, i.e., whenever T + OJ

or:+-) (or both). The major difficulty is that programs to

compute conditional maximum likelihood estimates do not accept the

immense amount of data arising from diary studies. For example, if

a subject is followed daily for one year and has twenty days of

symptom incidence, then there are terms to be

summed in the denominator of this subject's contribution to the

likelihood.

Second, if one can make the assumption that the

are i.i.d. observations from a distribution one can assume

a mixture model for the random effects. Here the likelihood

contribution for the ith subject is an integral of the form
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One common choice of is the univariate normal distribution.

Because the integration cannot be performed analytically, this

method would require numerical integration or some other

approximation. The estimates will be consistent and asymptotically

normal as N + CD. A minor problem here, as for the conditional

maximum likelihood estimator, is that the individual intercepts, ai,

are not estimated. However, in either case, once the fixed effects,

@, are estimated a second stage analysis could be used to estimate

the ai using likelihood or empirical Bayes techniques.

Finally, an approach that has not been discussed much in the

literature is to use (unconditional) maximum likelihood to jointly

estimate the parameters Here the likelihood

contribution of the ith individual is given by

and the full likelihood is maximized

over the N+p parameters. Standard logistic regression packages

require iterations involving the inversion of an (N+p) x (N+p)

matrix, which is too difficult for diary studies when N is large.

However, due to the special structure of the data, an efficient
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"two-step" maximization scheme can be implemented. The idea is as

follows: first, given fixed values for determine 6 to

maximize the full likelihood Then, given a fixed

value for B, determine ai to maximize for each individual.

Repeat these steps until convergence. This algorithm is easy to

implement, and convergence will not be a problem due to the

concavity of the logistic regression likelihood. The variance-

covariance matrix can be estimated in the usual way as long as the

block structure of the problem is used to simplify the required

matrix inversion.

The computations involved with this method are easier than

those for the conditional maximum likelihood or random intercept

approaches. In addition, the estimated intercepts (and their

variance estimates) can be used in a second stage analysis using

weighted least squares to assess the effects of subject covariates

(such as smoking levels or illness history). For consistency and

asymptotic normality of our estimates we need that T + 0~. This is

not too restrictive an assumption for diary studies in which

subjects are followed for a long period of time (such as daily for

one year or longer). Empirical Bayes modifications (Duffy and

Santner 1987, Wypij 1988) may improve inference with this method.

3.3. Models which Accommodate Both Autocorrelation and Subject

Heterogeneity Effects

The analyses summarized in the next section indicate that both

autocorrelation and heterogeneity are present in the Six Cities
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diary data. This seems likely to be true in other studies as well.

Thus, models which include both heterogeneity and autocorrelation

are needed. The most promising approach appears to be that which

combines fixed intercepts which vary over subjects with the Liang

and Zeger technique for modeling autocorrelation. Work is underway

to assess the feasibility of this approach, and if appropriate, to

develop the software necessary to implement this method.

4. RESULTS

This section illustrates some of the methods discussed in the

previous section by applying them to diary data from the Six Cities

Study. The analyses are based on data from three cities, Watertown,

MA, Kingston-Harriman, TN, and St. Louis, MO. Data for the other

three cities are still being collected and processed. In Section

4.1, we document the presence of autocorrelation in the daily

incidence rates and discuss methods for controlling for this

autocorrelation in the analysis. In Section 4.2, we discuss

heterogeneity of response and how it can be treated in the analysis.

Finally, in Section 4.3, we explore the data for lagged effects of

pollutant concentrations on symptom rates.

4.1 Evidence for Autocorrelation of Incidence Rates

Autocorrelation of time series data should be considered only

after controlling for the effects of measured covariates. In the

Six Cities diary data, only one independent variable, temperature,

had strong and consistent effects on symptom rates. In all analyses
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discussed in this report, the effects of temperature were controlled

by introducing temperature and the square of temperature into the

regression model. Each pollutant was investigated separately while

controlling for the effects of temperature in this way. Analyses

not reported here established that seasonal variables did not

contribute significantly to the model after the two temperature

terms had been added. Here we consider one set of analyses, those

investigating the effects of sulfur oxide concentration on the

incidence of cough (with or without symptoms) in Watertown.

Figure 1 shows the partial autocorrelation function of the

daily incidence rates. Figure 2 shows the partial autocorrelation

function of residuals from an ordinary logistic regression model for

cough incidence including temperature, temperature squared, and

sulfur dioxide concentration. (The partial autocorrelation of order

k is the correlation between y(t) and y(t-k) after controlling for

y(t-1), . . . . y(t-k+l).) Autocorrelation is reduced by inclusion of

the explanatory variables, but there is a strong indication of, at a

minimum, first and second order autocorrelation in the residuals.

The autocorrelation may be due to unmeasured time-dependent

covariates. Epidemic effects, which can be represented as lagged

values of prevalence, may also be important. The second panel in

Figure 2 shows the partial autocorrelation function after fitting a

regression model with first-order autoregressive errors to the data.

(Using the multiplicative AR model. See below.) This plot suggests

the presence of second order autocorrelation.

As noted in the methods section, this autocorrelation can be

modeled in several ways. Three approaches considered here are the
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additive AR model, which assumes that the differences between the

observed and expected incidence rates have an autoregressive error

structure, the multiplicative AR model, which assumes that the

conditional probability of symptom incidence on a given day depends

on the observed rates on previous days through an additive

contribution to the linear model for the logit of symptom

probability, and the Liang-Zeger model, which assumes that the

marginal distributions of symptom incidence follow a multiple

logistic distribution, while the errors have an autoregressive

covariance structure. We have considered each of these

possibilities, while also considering the possibility that the

symptom probabilities depend on the previous day's disease

prevalence.

Table 1 shows the effect on the regression coefficient for

sulfur dioxide concentration of choosing several different models

for the error structure. Sulfur dioxide was a significant predictor

of cough incidence in an ordinary logistic regression model assuming

independent errors. Models that adjusted for autoregressive errors

tended to reduce the statistical significance of the

coefficient. In the multiplicative AR model, a first-order

autoregressive term was significant but lagged prevalence was not,

suggesting that the autoregressive model satisfactorily explains the

dependency of the incidence rate on the previous day's outcomes

(data not shown). In the Liang and Zeger and additive AR models,

the first-order term was not significant. (See Table 1.) Since

these models are slightly different, it is not surprising that they

give different results for the order of the autoregression.
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Perhaps the most important feature of Table 1 is the

consistency among the estimated regression coefficients and standard

errors for sulfur dioxide obtained by different methods. Even

though the autocorrelation among successive days was of moderate

size and highly significant, different approaches to modeling this

autocorrelation, including ignoring it entirely (as ordinarily

logistic regression does), had little effect on the results.

4.2 Individual Effects

One potentially attractive way to account for individual

variability is to perform separate regressions on each subject. We

call this the Korn and Whittemore (KW) approach. Despite the

reservations described in the methods section, we examined this

approach for our data. KW also allowed us to examine the relations

between individual intercepts and child-specific covariates, such as

presence of chronic respiratory disease and parental smoking. In

Watertown, the weighted mean of the individual SO2 coefficients for

cough incidence was close to the coefficient obtained from the

analysis of the daily incidence rates. In Kingston and St. Louis,

the KW approach showed a stronger association than the grouped

analysis. This raises the possibility that methods allowing

individual variation to weak effects are more sensitive than methods

for analyzing pooled data. Nevertheless, the low incidence rates

made KW inappropriate for these data. The individual regressions

failed to converge for about 10% of the subjects. In the remaining

subjects, the distributions of the coefficients were clearly non-

normal. Even after adjusting for the different weights assigned to
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different coefficients, a highly skewed distribution remained.

Therefore, estimation and testing procedures based on normality

assumptions do not apply.

KW did allow a preliminary investigation of child-specific risk

factors. No association was found between parental smoking and the

underlying rate of cough incidence, but doctor-diagnosed asthma,

lung function less than 70% of predicted, and moisture in the

basement did show associations. Because of the poor distributional

properties of the estimated coefficients, we do not plan to continue

with this approach. The suggestion of greater sensitivity to small

changes due to air pollution indicates that consideration of

individual variation may be important. The individual intercept

model seems most capable of achieving this goal.

4.3 Lag Effects

Any effect of pollution exposure on symptoms is not necessarily

contemporaneous. The lag between exposure and symptom may also

differ among the pollutants, whose modes of action vary. For

instance, Dockery et al (1982) reported a lag of 1-2 weeks between

exposure to high levels of particulates and reductions in lung

function. In contrast, Spektor et al (1988) and Kinney et al (1988)

reported that high ozone exposure causes almost immediate reductions

in lung function. To explore the lag relationship in the diary

data, we utilized simple logistic regression with no autoregressive

components. Temperature was modeled with a linear and quadratic

term, as suggested by exploratory plots and analyses. The

concurrent and lagged pollutant measures for up to 14 days lag were



5. STRATEGIES FOR THE ANALYSIS OF DIARY STUDIES

The analyses described in this report have shown that rates of

incidence of symptoms among participants in a diary study tend to be

autocorrelated, perhaps because of epidemic effects and the effects

of omitted covariates on response rates. Moreover, our work and the

work of others has shown that subjects have heterogeneous response

rates. Analyses of diary data should examine the effects of both

autocorrelation and heterogeneity on estimated regression

coefficients and their standard errors.

This report has described several methods for investigating

heterogeneity. These methods focus on the daily incidence rates of

the symptom under study and use one of several approaches to

modeling the autocorrelation among these rates. In the example used

to illustrate these methods, controlling for autocorrelation had
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examined individually. If the pattern in these individual

regressions suggested a model using a weighted linear combination of

pollutant concentrations on several previous days, such a

distributed lag model was also fit. This approach was applied in

each of three cities (Watertown, Kingston-Harriman, and St. Louis).

These analyses showed the strongest associations between Upper

Respiratory Illness and acid measurements (Table 2). The acid

measurements on the two previous days had the largest regression

coefficients. A model using a weighted combination of

concentrations on the three previous days had the largest

coefficient, about twice as large as that for any single day.
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little effect on the results. Additional work is needed to

determine the conditions under which autocorrelation can be

disregarded.

Methods for modeling heterogeneity of response rates were

outlined in Section 3.2. These methods have yet to be applied to

the diary data from the Six Cities Study. Future work will focus on

evaluating the computational feasibility of the three estimation

methods described in Section 3.2. The simultaneous treatment of

autocorrelation and heterogeneity requires an extension of these

methods which is still under development.

An alternative approach, the two-stage method (Korn and

Whittemore 1979), can be used to model both autocorrelation and

heterogeneity when each individual has both a substantial number of

reporting days and a substantial number of days with symptoms. In

this method, one begins with modified logistic regression of the

data for each subject, using the quasi-likelihood method of Liang

and Zeger (1986) with a working covariance matrix that represents

autocorrelation among the residuals. At the second stage, one

analyzes the individual regression coefficients by generalized least

squares methods, as described in Section 3. This method is

efficient, relatively easy to implement, and easy to explain. It

is not appropriate, however, for endpoints with low incidence like

those investigated in the Six Cities Study.
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Model S.E. Comments

Regression coefficients for cough incidence on

in Watertown, MA for different model specifications

Table 1

30

0.0053

0.00520.0133Ordinary logistic

Models with Two Autoregressive Terms

Multiplicative AR 0.0116

0.0132

0.0117

0.010

0.0059 AR(1) insignificant

0.0053 AR(1) insignificant

0.0056 Lagged prevalence
insignificant

Liang and Zeger

Additive AR

Lagged prevalence
(No AR(1) term)

Reduced Models

0.0130

0.0113

0.0059

0.0052Additive AR
(AR(2) only)

Liang and Zeger
(AR(2) only)
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Table 2

Evidence for Lagged Effects of

Concentrations on Upper Respiratory Symptoms

Coefficients
Distributed

0 1 2 3 Lag

0.431 0.683 0.690 0.076 1.28

0.121 0.461 0.258 0.232 1.16

0.171 0.848 0.524 0.227 2.34

Lag Period

WAT

KH

STL
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Figure Legends

Figure 1. Sample autocorrelation function of the daily incidence
rates of cough.

Figure 2. The left panel shows the sample partial autocorrelation
function of the residuals from an ordinary logistic
regression of cough incidence rates on temperature, the
square of temperature, and sulfur dioxide concentrations.
The right panel shows the autocorrelation function when
the logistic regression function is modified to assume
that the errors have first-order autoregressive error
structure.



FIGURE 1

PARTIAL AUTOCORRELATION FUNCTION

LOGIT OF COUGH INCIDENCE



FIGURE 2

CONTROLLING FOR TEMPERATURE,
TEMPERATURE SQUARED, AND SO2 ADDING AN AR1 TERM
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APPENDIX 1



Harvard Health/Air Quality Study Group
Harvard School of Public Health

665 Huntington Avenue; Building #1, Room 1414
Boston, MA 02115

Telephone: (617) 732-0830 -- Call Collect

Every two weeks we shall phone you and ask you to read the calendar
record to us. At the end of each month simply tear off the page for the
completed month and mail it back to us in a prepaid envelope we shall
send you. We want you to keep this daily health diary of your child
through several changes of season, throughout the school year and sum-
mer of 1987.

The Guide to Health Code Letters (see last page) will help you become
familiar with the health code we are using in the study. Read through
this Guide right away, and keep it handy as a reference aid whenever
you might have any questions on how to code a particular symptom or
sick day.

Attach your calendar to a bulletin board or kitchen cabinet. On any
day that your child has any of the symptoms listed on the top of each
page, simply write the code letter(s) corresponding to his or her
symptom(s) under that day’s date. Be sure to also write in the number
code (1, 2 or 3) or asterisk (*) whenever they might apply. Please
review the sample calendar for August on the next page; it is included
here to give you an idea of what your health calendar might look like
once it is filled out.

Instructions for Using Calendars



SAMPLE CALENDAR: AUGUST
If your child has any of the symptoms listed below, write the code
letters for each symptom in the block for that day. Please also add
the number code (1, 2 or 3) or asterisk (*) whenever applicable.

A Hoarseness G Fever
B Sore Throat H Ear Pain or Discharge
C Cough J Runny or Stuffed Nose
D Phlegm from the Chest K Burning, Aching or Red Eyes
E Pain in the Chest S Upset Stomach
F Wheezing O None of the Above or Healthy

- - - - - - - - - - - - - -

1 Stayed Home for the Day 3 Hospitalized
2 Saw Doctor or Nurse * Out of Town Over Night

August 1986



Hoarseness -- Hoarse or dry throat; raspy voice; laryngitis.

Cough -- Sporadic, intermittent or protracted coughing.

Sore Throat -- Any soreness or irritation of the throat; “strep throat;” tonsilitis.

Phlegm from the Chest -- Phlegm or mucus coughed up from the lungs or area of
the throat below the voice box; congestion in the lungs.

Pain in the Chest -- Aching, irritation or feeling of constriction in the lungs.

Wheezing -- Wheezing or whistling sound from the chest with or without short-
ness of breath.

Fever -- An above-average temperature recorded by thermometer at any point
during the day or evening.

Ear Pain or Discharge -- Ear ache or ear infection; discharge of fluid from the
ears.

H

G

E

F

A

B

C

D

J

K

S

O

1

2

3

4

Hospitalized -- Admitted to a hospital or clinic as an in-patient for one night or
more.

Saw Doctor or Nurse -- Any appointment or visit with a health practitioner,
whether regularly scheduled or not.

Stayed Home for the Day -- Interruption in the child’s daily routine resulting from
any illness; e.g. child stays home from school or on a non-school day remains
indoors.

None of the Above or Healthy -- No symptoms at all, or symptoms other than
those listed above (e.g., headache, rash, etc.).

Upset Stomach -- Stomach pain, vomiting, acid indigestion, or diarrhea.

Burning, Aching or Red Eyes -- Sensations of burning, itching or aching in the
eyes or eyelids; red or watery eyes.

Runny or Stuffed Nose -- Nasal or sinus congestion; post-nasal drip; phlegm or
mucus from back of throat; sneezing; itching of the nasal passages.

Out of Town Over Night -- Out of town five miles or more over night or longer, for
vacation, holidays or any other reason.

Guide to Health Code Letters



DEFINITIONS OF SYMPTOM COMPLEXES
USED IN THE ANALYSIS OF THE DIARY DATA

Upper Respiratory Illness: Any two of hoarseness, sore throat,
and fever (symptoms A, B, and G, respectively).

Lower Respiratory Illness: Any two of cough, chest pain,
phlegm, and wheeze (symptoms C, D, E, and F,
respectively).

Rhinitis: Runny nose (symptom j), with no other symptom


